t^2-12t+36=6

Simple and best practice solution for t^2-12t+36=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-12t+36=6 equation:



t^2-12t+36=6
We move all terms to the left:
t^2-12t+36-(6)=0
We add all the numbers together, and all the variables
t^2-12t+30=0
a = 1; b = -12; c = +30;
Δ = b2-4ac
Δ = -122-4·1·30
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{6}}{2*1}=\frac{12-2\sqrt{6}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{6}}{2*1}=\frac{12+2\sqrt{6}}{2} $

See similar equations:

| 8t^2–3t+3=0 | | 2x-8=24÷3 | | X(2)-4x+3=0 | | 8s^2–4s+9=0 | | 2=(6x-14)=180 | | X(2)+7x+12=0 | | 5v^2+3v+1=0 | | 2=(6x-14) | | 84(x+8)+x=180 | | 5v2+3v+1=0 | | 3x-x2-8=0 | | 1=(5x-9)+2=(6x-4)=180 | | 65/13=x | | 4x-9x=42 | | 4(d+7);d=2= | | 3x=x2+8 | | 11+r;r=7= | | -4(x-8)-3=6(x-2) | | 6x+(3x/2)=90 | | 8p;p=9= | | -4(2+n)=16 | | 9x-11•2=16x-12 | | 78.3=9(m+2.3) | | 3=12+x/8 | | 0.60x+0.30(20)=0.30(40) | | x+46.5=105 | | -x+2(x+1)=-16-5x | | (3x-6)+2x=164 | | X/2+3y=20 | | 9y-6y-14=35.35 | | 0.30x+0.85(30)=0.15(136) | | 7x+16.2=170.9 |

Equations solver categories